Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(9): e0239497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32966304

RESUMO

The aim of this work was to enrich the knowledge on the potential applications of Elaeagnus mollis leaf extracts. For this purpose, the bioactive compounds (phenolic, flavonoid, alkaloid, proanthocyanidin, chlorophyll and carotene content), antioxidant activity, anti-HepG2 cell proliferation, and cholinesterase inhibitory potential (AChE and BChE) of E. mollis leaves which obtained from different habitats were quantitatively analyzed using various solvents (water, methanol, ethanol, and n-hexane). The results showed that the methanol extracts exhibited the strongest 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and the water extracts showed the best antioxidant activity in the 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical scavenging activity, ferric reducing antioxidant power (FRAP), and reducing power (RP) assays. Moreover, the methanol extracts showed the best inhibitory activity against cholinesterase and HepG2 cancer cells. Correlation analysis revealed that the high antioxidant and anti-HepG2 cell proliferation activities were mainly attributed to the total phenolics, flavonoids, and proanthocyanidins while AChE inhibition was attributed to the total alkaloid and carotene content. The statistical results showed that the effect of habitats was lower than that of different solvents used. Additionally, the metabolic profiles of E. mollis leaves were evaluated using HPLC-ESI-Q TRAP-MS/MS, and a total of 1,017 chemical components were detected and classified into 23 classes. The organic acids and derivatives ranked the first, followed by flavone, amino acid and derivatives, and so on. In conclusion, the effects of different solvents were more significant than the effects of different habitats and the methanol extracts of E. mollis leaves could be used as an effective source of functional active components, provide benefits to physical health care and be applied to the food and pharmaceutical industries.


Assuntos
Elaeagnaceae/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , China , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Ecossistema , Células Hep G2 , Humanos , Folhas de Planta/química , Plantas Medicinais/química , Solventes
2.
Biosci Rep ; 40(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32558907

RESUMO

Zanthoxylum bungeanum, a spice and medicinal plant, is cultivated in many parts of China and some countries in Southeast Asia; however, data on its genome are lacking. In the present study, we performed a whole-genome survey and developed novel genomic-SSR markers of Z. bungeanum. Clean data (∼197.16 Gb) were obtained and assembled into 11185221 scaffolds with an N50 of 183 bp. K-mer analysis revealed that Z. bungeanum has an estimated genome size of 3971.92 Mb, and the GC content, heterozygous rate, and repeat sequence rate are 37.21%, 1.73%, and 86.04%, respectively. These results indicate that the genome of Z. bungeanum is complex. Furthermore, 27153 simple sequence repeat (SSR) loci were identified from 57288 scaffolds with a minimum length > 1 kb. Mononucleotide repeats (19706) were the most abundant type, followed by dinucleotide repeats (5154). The most common motifs were A/T, followed by AT/AT; these SSRs accounted for 71.42% and 11.84% of all repeats, respectively. A total of 21243 non-repeating primer pairs were designed, and 100 were randomly selected and validated by PCR analysis using DNA from 10 Z. bungeanum individuals and 5 Zanthoxylum armatum individuals. Finally, 36 polymorphic SSR markers were developed with polymorphism information content (PIC) values ranging from 0.16 to 0.75. Cluster analysis revealed that Z. bungeanum and Z. armatum could be divided into two major clusters, suggesting that these newly developed SSR markers are useful for genetic diversity and germplasm resource identification in Z. bungeanum and Z. armatum.


Assuntos
Genes de Plantas , Genoma de Planta , Repetições de Microssatélites , Sequenciamento Completo do Genoma , Zanthoxylum/genética , Composição de Bases , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Zanthoxylum/classificação
3.
Plant Physiol Biochem ; 150: 196-203, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32155447

RESUMO

Plants can accumulate a large amount of reactive oxygen species under adverse conditions such as drought and high temperature, which seriously affect the normal growth and development of plants. The antioxidant system can scavenge the reactive oxygen species produced under drought conditions and so mitigate oxidative damage. However, the regulation patterns of many miRNAs under drought stress are still unclear. The content of antioxidant enzymes and the expression patterns of miRNAs and their target genes related to antioxidant systems were studied under drought stress in Zanthoxylum bungeanum. The results indicate that under drought stress, POD, CAT, APX, proline, MDA and related genes all show positive responses to drought, while SOD and its genes showed a negative response. It is indicated that in the antioxidant process of Z. bungeanum, POD, CAT, and APX play a major role, and SOD plays a supporting role. In addition, GUS histochemical and RT-qPCR experimental results show that the expression levels of miRNAs and their target genes are basically negatively correlated, indicating that miRNAs can inhibit the expression of related genes and are also important regulators in the antioxidant system of Z. bungeanum. According to the expression patterns of antioxidant enzymes, miRNA and its target genes under drought stress, combined with previous research results, a model of plant antioxidant mechanism was constructed to provide a reference for further understanding of plant antioxidant mechanism.


Assuntos
Secas , MicroRNAs , Oxirredutases , Estresse Fisiológico , Zanthoxylum , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Estresse Fisiológico/genética , Zanthoxylum/genética , Zanthoxylum/metabolismo
4.
Chemosphere ; 244: 125501, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31812048

RESUMO

The presence of potentially toxic mineral elements is often reported in soil, fruits and vegetables. The concentrations of these are influenced by location, climate and soil conditions, and plant species. This study reports levels of aluminium (Al), arsenic (As), cadmium (Cd), lead (Pb), manganese (Mn) and nickel (Ni) in the soils where Chinese Prickly Ash - Zanthoxylum bungeanum (ZB) and Z. armatum (ZA) are grown. Soil and pericarp samples were taken from 72 ZB and ZA plantations in 12 provinces. The soil pollution index (PI) was generally low for As (0.04-0.35), Pb (0.01-0.74) and Ni (0.15-1.06). The PI was higher for Cd (0.06-6.99) and was assessed at three categorical levels: 'low' (in 26% of soils), 'moderate' (in 67% of soils) and high (in 7% of soils). The majority (94%) of soils were slightly polluted with Cd with the integrated pollution index in the range 0.17-2.02. More than 60% of pericarp samples posed a high non-cancer health risk based on the hazard index, while 43% of pericarp samples posed a considerable cancer risk based on the incremental lifetime cancer risk. The mean temperature and the mean relative humidity contributed most significantly (28% and 10%, respectively) to variation in the concentrations of potentially toxic elements in the pericarps. This study provides a comprehensive report on the concentrations of potentially toxic elements in the soils and associated pericarps, and the effects of location, climate, and soil on the levels of potentially toxic elements in the soil and pericarps, including the effects of tree species.


Assuntos
Monitoramento Ambiental , Fraxinus/fisiologia , Poluentes do Solo/toxicidade , Oligoelementos/toxicidade , Arsênio , Cádmio , China , Clima , Poluição Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...